
When to Think Step by Step: Computing the
Cost-Performance Trade-offs of Chain-of-Thought

Prompting
Akshay Manglik
Computer Science

Columbia University
New York, United States

am5747@columbia.edu

Aman Choudhri
Statistics

Columbia University
New York, United States

ac4972@columbia.edu

Abstract—As large language models become more widely
deployed, understanding the tradeoffs between inference opti-
mizations and model scaling grows increasingly important. This
paper introduces a novel methodology for evaluating the cost-
performance characteristics of inference strategies like chain-
of-thought (CoT) prompting across model scales and architec-
tures. Through experiments across 26 models and 7 reasoning
benchmarks, we find that CoT’s benefits emerge differently when
scaling model size versus training data - with stronger effects
from increasing model size. We demonstrate that for many
inference scenarios, CoT prompting is more compute-efficient
than training larger models to achieve equivalent performance,
although this effect is modulated by using a sufficiently large
base model to generate enough high-quality tokens. Our analysis
framework provides practical guidance for ML practitioners on
when to employ inference optimizations versus scale up model
training. We also identify limitations in current approaches to de-
composing model capabilities, showing that code reasoning tasks
play an outsized role in previous analyses. This work advances
our understanding of how to optimally allocate compute between
training and inference time for language model deployment.

Code and results are available at our project page.
Index Terms—LLM, scaling laws, inference compute

I. INTRODUCTION

A. Background and Motivation

Large language models have reshaped natural language
processing, achieving state-of-the-art performance on tasks
like text classification, machine translation, summarization,
and question answering [42, 52]. Many of these advance-
ments were driven by improvements in pre-training, such as
increasing model size (N) and training data token counts
(D), while also improving training data quality and recipes
[5, 41, 29]. While post-training has improved instruction-
following, alignment, and reasoning ability, much of model
scaling research has been focused on pre-training, which drives
the majority of costs of developing LLMs [25].

As demand for inference tokens grows, compute and cost
constraints create a strong incentive for those deploying LLMs
in practice to find smaller, sufficiently performant alternatives.
In addition to ’free-lunch’ systems improvements like Flash
Attention [11] and vLLM [27] that allocate GPU memory

more efficiently, researchers have turned to model quantization
[23, 14, 36], model pruning [7], and distillation [21, 1, 2],
as ways of reducing inference costs, with varying degrees of
impact on model accuracy.

Another approach is to train smaller models on a larger
number of training tokens, anticipating that a large volume of
tokens will be generated at inference time [35, 15]. Essentially,
this approach “trades” extra cost at training time for cheaper
and less compute-intensive inference, amortizing the cost of
training over the course of many inference requests.

Parallel to this push for smaller models has been a growing
recognition that spending more compute at inference time, per
request, can dramatically improve performance. There are a
variety of strategies to allocate this extra compute via sampling
and search methods, such as chain of thought, self-consistency,
best-of-N, and Monte Carlo Tree Search (MCTS). For a
more complete review of such “inference-time optimizations,”
please see [47].

The competition between inference cost incentivizing
smaller and cheaper models and performance incentivizing
larger, costly models or greater inference-time compute creates
a need for detailed study of the tradeoffs of any given
inference-time optimization. We attempt to address this need
in this paper. Specifically, we introduce a novel methodology
to study the cost-performance tradeoff of any given inference-
time optimization, taking advantage of a recent observational
technique to characterize the scaling performance of training
compute [33]. We also analyze and interpret the limitations of
this observational scaling technique, and we identify charac-
teristics of emergent behavior of chain of thought at a variety
of FLOP scales.

Our contributions are as follows:
1) We evaluate the effects of Chain of Thought Prompting

on model performance across a variety of reasoning and
knowledge benchmarks, noting disparate effects between
increases in model size and training data levels.

2) We analyze the relative weight of training FLOPs and
inference tokens in driving Standard Prompting and
Chain of Thought Prompting accuracy, noting that train-

https://github.com/AkshayM21/obs-scaling-inference-opts


ing FLOPs is more important for Chain of Thought
prompting than inference token count.

3) We identify how Chain of Thought allows a model to
achieve benchmark performance of a larger base model.
We then propose a novel methodology for characterizing
the cost-performance tradeoffs of LLM inference strate-
gies across model scales and families.

4) We reproduce part of the Observational Scaling Laws
analysis from Ruan et al, and demonstrate the impor-
tance of coding tasks for their analysis through bench-
mark ablation.

5) We document various evaluation approaches for the
benchmarks and open-source our modified scripts.

II. LITERATURE REVIEW

A. Scaling Laws

Kaplan et al introduced neural scaling laws, which extrap-
olate out reliable log-linear predictions for model loss based
on a parametric equation using model size (N) and training
data levels (D) [24]. Hoffman et al developed the Chinchilla
compute-optimal scaling laws, which scale the number of
training tokens equally with model size [22]. Sardana et al
incorporated the cost of inference into Chinchilla scaling laws
and found that training smaller models for longer periods of
time were superior.

Ruan et al extended the scaling law literature by formulat-
ing ”Observational Scaling Laws.” Ruan et al hypothesized
that model families differ in their efficiency in converting
training compute to benchmark performance; this is mediated
by latent reasoning capabilities. Specifically, they measured
these latent reasoning capabilities by decomposing benchmark
performance into a low-dimensional space using PCA, and
link the top three principal components to general reasoning,
mathematical reasoning, and code reasoning. They generated
model-family-specific curves that relate latent reasoning to
compute, and model-family-agnostic curves that relate latent
reasoning to benchmark performance. Additionally, they pro-
posed a model-family-equivalent FLOPs metric, which scales
a model family’s performance to the compute efficiency of a
reference family, and used this to predict emergent capabilities
and post-training performance.

B. Inference Optimizations

We identify several categories of inference optimizations.
We focus on optimizations that do not require further finetun-
ing, although many optimizations utilize supervised finetuning,
rejection finetuning, or RL-based post-training in order to
further improve model reasoning at inference-time. Given our
paper’s focus on Chain of Thought, we discuss prompting
techniques at length here: see Appendix for more details on
sampling, search, and verifier-based methods.

Prompting Prompting techniques append instructions or
directives to the end of a prompt, in order to elicit desired
reasoning behavior from a language model. The most well-
known prompting technique is Chain of Thought, which either
directs the model to ”think step by step” or provides the

model with a few examples of reasoning processes [46, 26].
Both these techniques motivate the model to engage in an
identifiable stepwise reasoning process, which often boosts
generation quality and task accuracy. Chain of Thought has
been noted to help primarily on math and symbolic rea-
soning prompts [38]. Other prompting techniques attempt to
induce more complex reasoning behavior, often using few-
shot demonstrations of the desired behavior; many exist, and
descriptions of a few promising techniques follow. Analogical
prompting drives the model to identify relevant analogies to
the task using in-context learning, in order to condition the
model on relevant portions of its weight space to the task
at hand [49]. Least-to-Most Prompting motivates a model to
break down a problem into constituent subproblems, and use
the solution to the subproblems to inform the overall solution
[54]. Complexity-Based Prompting prompts a language model
with more complex few-shot reasoning examples (defined as
having more reasoning steps); it also limits self-consistency
to considering the top-K reasoning traces, sorted by number
of reasoning steps [12]. Self-Endorsement breaks down model
generations into constituent facts, has the model verify each
fact, and selects the sample with the greatest number of
verified facts or generates a new sample using only verified
facts [43]. Step-Back Prompting prompts the model to identify
a followup question to a task (e.g., what are the physics
principles behind this question?), and then generates a chain-
of-thought reasoning solution using the answer to that follow-
up question [53].

III. METHODOLOGY

We consider how models perform with and without
inference-time optimizations. Of the inference-time optimiza-
tions, we initially considered and implemented Chain of
Thought, Beam Search, and Self-Consistency; we then nar-
rowed our focus to only Chain of Thought, due to its impor-
tance in reasoning and limitations on compute.

To identify how reasoning ability improves and stratifies
across model abilities, we evaluate a variety of model families,
model sizes, and training token levels. Specifically, we evaluate
the Gemma 2 {2B, 9B} [39], Llama 3.2 {1B, 8B} [15], Pythia
{160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B} [3], Qwen2.5
{0.5B, 1.5B, 3B, 7B, 14B} [48, 40], and OLMo {1B, 7B}
[16] models. To understand the role of training token levels,
following the guidance of [8] we evaluate OLMo 1B at
checkpoints for {10B, 100B, 1T, 2T, and 3.05T} pre-training
tokens, and OLMo 7B at checkpoints for {10B, 100B, 1T, 2T,
and 2.75T} pre-training tokens.

Following Ruan et al, we evaluate baseline and chain-
of-thought inference on a variety of benchmarks that test
subject-matter knowledge, commonsense reasoning, scientific
reasoning, mathematical reasoning, and cross-linguistic rea-
soning. Specifically, we evaluate models on GSM8K [10], Arc-
Challenge [9], Winogrande [34], XWinograd [32], HellaSwag
[50], MMLU [19], and TruthfulQA [31], amounting to around
130,000 questions per model. Unlike Ruan et al, we do not
consider HumanEval [6], due to difficulties with evaluating

https://github.com/AkshayM21/obs-scaling-inference-opts


arbitrarily-generated code in a safe manner and compute
limitations; we leave this as future work.

For conducting evaluations, we utilize Eleuther AI’s open-
source LM Evaluation Harness, which contains evaluation
scripts for each of the benchmarks we evaluated [13].

GSM8K follows a ”free-form generation” format, where
models generate a number of tokens before a regex is used
to identify the model’s final numeric answer, if provided.
This is done to enable Chain-of-Thought, which GSM8K tests
by providing few-shot examples in each prompt. No other
benchmark we evaluated provides few-shot examples. These
other benchmarks follow a ”log-likelihood” task format, where
the model is given the question and a list of multiple choice
answers, and the model answer is ascertained based on the
logits of the four possible letter choices. This does not leave
room for generating additional tokens of reasoning, which is
necessary for all inference-time optimizations. Therefore, for
evaluating Chain of Thought, we generate modified scripts
for each benchmark, following guidance from the OLMES
evaluation suite [17] on question framing and evaluation
formats. These modified ”free-form generation” evaluations
permit models to generate rationales for answering a question,
after which we use regexes to identify any answers given.
We evaluate models using full precision (double precision)
activations and weights.

These differing answer formats for baseline and chain of
thought analysis make it difficult to compare answer quality
and accuracy between models, as the free form generation
format is significantly more difficult and harder to evaluate.
(See Appendix for additional details.) We therefore run a
second round of evaluations on both baseline and chain of
thought tasks, using a unified hybrid format. For log-likelihood
format question, we first generate up to 256 tokens of output,
regardless of whether chain of thought is specified. Following
this, we postpend the generation with the string ”The answer
is:” and evaluate the log-likelihood of all given answer choices,
enabling a more reliable measurement of answer quality given
a lack of consistency in language model answer formats. Addi-
tionally, to improve generation efficiency, we utilize the vLLM
engine [28] for efficient memory management. We modify the
LM Evaluation Harness scripts for vLLM integration to enable
this custom answer format. We evaluate models by quantizing
activations and weights using the brain floating point (bfloat16)
format, due to similar benchmark performance to full precision
activation and weights.

IV. RESULTS AND DISCUSSION

A. Log-Likelihood Form

In our first experimental section, we evaluate models us-
ing the common log-likelihood evaluation format. For each
dataset, models are presented with a multiple choice question.
Then the log-likelihood of each answer choice string (”(A)”,
for example) is computed and the model is scored using the
answer choice logits.

As this is a fairly inexpensive format, we were able to
evaluate a diversity of models across scales from 160M to

Fig. 1. Model Performance on Log-Likelihood Format. Accuracy scores
across 7 tasks are averaged to yield one overall score. A tight correlation
is observed between training FLOPs and performance, with significant per-
formance growth occurring at 1023 training FLOPs.

Fig. 2. Model Performance, Both Log-Likelihood and Hybrid Generation
Tasks. Log-likelihood evaluation significantly outperforms free-form genera-
tion after around 1021 training FLOPs, reflecting the more difficult nature of
the free-form task.

14B parameters. The performance of each model is plotted
in Figure 1, with the total compute used to train the model
on the x-axis. To calculate this figure, we use the common
approximation of training compute as 6ND FLOPs for N
parameters and D training tokens.

Chain of Thought prompting requires that a model is able
to output tokens to generate a “reasoning” trace. As such, it
is unsuitable for use on the log-likelihood format.

B. Hybrid Generation Format

In the hybrid generation format, the models are similarly
prompted with a multiple choice question, then they are
allowed a budget of T = 256 tokens in which to output “rea-
soning tokens” that shift the conditional next-token distribution
closer towards the correct answer. We then add ”The answer
is:” to the end of the model’s response before measuring logits
of all possible multiple choice answers to select a final answer.

This format is notably more difficult for the models, and
requires far more forward passes. As such, we were only able
to evaluate a subset of the models. The average benchmark
scores, contrasted with those from the log-likelihood evalua-
tion mode, are presented in Figure 2. At around 1021 train-
ing FLOPs, the performance from log-likelihoood evaluation
rapidly diverges from that of free-form generation. The two
do remain correlated, however.



Fig. 3. Model Performance with and without Chain of Thought.

Fig. 4. Average Benchmark Performance Improvement Using Chain of
Thought. Higher is better, with the line y = 0 representing equivalent
performance with or without Chain of Thought. Dotted lines are drawn
between models within the same family.

C. Chain of Thought Prompting

The inference-time optimization we evaluate is Chain of
Thought prompting [46]. For this strategy, we keep the same
generation budget of T = 256 tokens. But before prompting
the model for its response, we insert the tokens: ”Let’s think
step by step.” The performance results are displayed in Figure
3.

Concordant with the original Chain of Thought paper, we
observe differential benefits across model sizes and train
tokens. We examine this further in Figure 4, plotting the
difference between performance with and without CoT.

Interestingly, we observe different rates of growth in the
benefit of Chain of Thought across model families. In the
Pythia family, where train tokens were fixed and model size
increased, we see a relatively steep growth rate. By contrast,
the performance improvement slope within the OLMO family
is far shallower. For this experiment, the OLMO models were
all intermediate checkpoints of the same 1B-parameter model,
meaning the model size was fixed and the train tokens varied.

Data across a larger collection of models is necessary to
provide more evidence for this apparent trend. But to our
knowledge, this is a novel result.

Contrary to expectations, the 1B LLAMA-3.2 model suf-
fered a substantial performance hit when using Chain of
Thought prompting. This may be due to the model hitting the

T = 256 generated tokens ceiling and being unable to produce
a sufficiently helpful answer rationale within budget. Table I
supports this theory: LLAMA-3.2 on average generates far
more tokens for the same prompt relative to the other models
we evaluated, when using Chain of Thought.

Model Standard CoT Token Ratio
Llama-3.2-1B 36.68 136.07 24.65
OLMo-1B, 3T checkpoint 20.90 30.10 94.69
OLMo-1B, 2T checkpoint 14.92 47.10 6.18
OLMo-1B, 1T checkpoint 17.15 74.54 47.49
OLMo-1B, 0.1T checkpoint 15.99 39.91 12.22
OLMo-1B, 0.01T checkpoint 16.79 50.56 8.64
Pythia-1B 23.77 64.77 7.94
Pythia-410M 23.77 18.73 1.63
Mean 21.25 57.72 8.20

TABLE I
TOKENS GENERATED USING CHAIN OF THOUGHT VERSUS STANDARD

PROMPTING

D. Latent Reasoning Decomposition

Following Ruan et al, we decompose our benchmark per-
formance into a low-dimensional space using PCA. Figure
5 shows the relative weights of each benchmark from our
latent reasoning vectors. Only the first principal component is
meaningful, and it primarily averages over MMLU (subject-
matter knowledge) and GSM8K (mathematical reasoning). We
attribute this partially to using a small number of models and
smaller-sized models, which limits the variation in benchmark
performance crucial for this analysis.

However, our analysis also does not include code reasoning
(HumanEval), which could explain the poor PC differentiation
as well. This led us to reproduce the Ruan et al PC loadings,
sans HumanEval, in Figure 6. We also find that the Ruan et
al PC loadings are highly dependent on the presence of code
reasoning; without including a code benchmark, there is only
one meaningful PC with substantially weaker coefficients (as
indicated by displaying the loadings on the same color scale as
the original visualization from [33]. This PC averages over all
benchmarks in similar proportions to our own PC loadings,
despite our loadings covering a much smaller set of models
with substantially less training compute. This implies that
the observational scaling laws method may be more brittle
and benchmark-dependent than previously understood, and
indicates the necessity of benchmark coverage and diversity
when using observational scaling laws.

E. Cost-Performance Profiling

Finally, we model the relationship between inference cost
and benchmark performance. Figure 7 demonstrates the re-
lationship between tokens generated and average benchmark
performance, for both standard prompted models and chain of
thought prompted models. We initially plot best fit lines for
how increasing inference tokens relates to average benchmark
score; for both prompting types, we find a positive effect,
with different slopes. However, performance of standard and
chain of thought prompting can be thought of as having two
influences: increased training FLOPs, and increased inference



Fig. 5. PC Loadings from Decomposing Benchmark Performance into Low-
Dimensional Space.

Fig. 6. PC Loadings from Ablating HumanEval (Code) from Ruan et al Data
[33]. We use the same visualization scale as the original graph from the Ruan
paper.

tokens generated. Training FLOPs and generating more in-
ference tokens are correlated in our data, making it unclear
what the true effect of increasing inference tokens is. We
decompose the performance of Standard and Chain of Thought
prompting into these two elements using fitted IsoFLOP curves
to standard and chain of thought prompt data, respectively. We
fit training FLOPs and inference token data for each prompt
group using the equation benchmark = α log(FLOPs) +
β ∗ tokens + δ. We find optimal fit for Standard Prompting
for α = 0.00639, β = 0.000684, δ = −0.0215, and for Chain
of Thought Prompting for α = 0.00680, β = 0.0000798, δ =
−0.0320.

The slope of these curves indicates that Standard Prompt-
ing’s performance is due to increased inference tokens gener-
ated: for a given FLOP level (red dotted line), benchmark score
increases with more inference tokens generated. Conversely,
Chain of Thought Prompting performance improvements are
largely due to increases in training FLOPs. For a given FLOP
level for Chain of Thought (black dotted line), benchmark
score only increases slightly with more inference tokens gen-
erated, but the IsoFLOP curves are more spaced out, indicated
a larger gain from higher training FLOPs.

This counterintuitive result implies that chain of thought
scales less effectively with inference compute than a normal
model; we attribute this effect to models needing a certain

Fig. 7. Average Benchmark Score versus Inference Tokens Generated, for
Standard Prompting and Chain of Thought Prompting. IsoFLOP curves are
plotted for varying training FLOP levels. The differing slopes of IsoFLOP
curves allow us to decompose the effects of model size and increased inference
tokens on benchmark score.

baseline level of FLOPs to effectively leverage chain of
thought. We leave further exploration of this effect on larger
training compute and inference token ranges to future work.

Still, the positive relationship between benchmark perfor-
mance with inference compute scaling implies models can
bootstrap the performance of a larger model using Chain
of Thought. To calculate this effect, inspired by [33], we
calculate a “Train-Equivalent FLOPs” metric for each model.
Within each model family, we fit a linear regression of average
benchmark performance on log-train-compute. This regression
allows us to back out the estimated number of additional
FLOPs it would take to train a given model to reach the same
performance as a Chain of Thought variant.

In Figure 8, we examine the relationship between addi-
tional inference tokens generated per request (as a ratio to
standard inference tokens) when using Chain of Thought (the
“real cost”) versus the additional train compute that would
have been necessary to achieve the same performance (the
“alternative cost”), as a ratio to original train FLOPs. We
find that increasing the number of chain of thought inference
tokens, relative to original inference tokens, increases the
train equivalent FLOPs: essentially, performing longer chain
of thoughts allows you to achieve the results of a larger base
model, controlling for model size.

We further develop this comparison between cost at infer-
ence time and cost at train time in Figure 9. Following the
framing of [35], we fix a performance threshold and study
the optimal allocation of compute across train and inference
based on the volume of inference requests one expects a
model will fulfill. Specifically, we focus on the Chain of
Thought performance of the final OLMo-1B checkpoint as our
threshold, given that it appears to have a sufficient amount
of training compute to be able to utilize Chain of Thought
effectively.

The standard approximation for inference FLOP costs in



Fig. 8. Train-Equivalent Compute Ratio versus Average Inference Cost with
CoT. As the cost of inference with CoT grows (a higher ratio of CoT tokens
to standard prompting tokens), there may be weak positive correlation with
larger improvements in train-equivalent FLOPs.

Fig. 9. Cost Optimality Regimes for Inference Strategies, by Expected
Inference Volume (for OLMo-1B). Inference cost was determined using the
model size and token generation performance from the final checkpoint of
OLMo-1B.

large language models is 2NDinf FLOPs, where Dinf is the
number of inference tokens generated for a given request.
Using our estimated average CoT “generation ratios” from
Table I, we can therefore model the inference tokens generated
from one request using CoT as D̃inf = DinfβCoT. With this
approximation, we can calculate the lifetime expected FLOP
cost of a model as the sum of its train FLOPs and the FLOPs
per request times the expected number of lifetime requests.
The results from this calculation applied to the final checkpoint
of the OLMo-1B model are displayed in Figure 9. The figure
dislays a large region, up to roughly 10 trillion lifetime
token generations, wherein Chain of Thought prompting is a
more cost-effective allocation of compute to achieve the same
performance.

V. CONCLUSION

In this paper, we propose and test a novel methodology
to evaluate the performance-cost tradeoffs of large language
model inference optimizations across model scales and fami-
lies, extending previous work in [33, 35].

We adapt the log-likelihood task format to become suit-
able for use with Chain of Thought prompting by including
rationale generation (“hybrid generation”). We find that this
format adjustment worsens baseline benchmark performance
across the board, with pronounced effects for larger models,
despite the same approach for determining the final answer
(log-likelihood of multiple choice answers). This suggests that
rationales may add noise to the model’s answer, resulting in
less accurate answers. This effect may be limited to 1.4B and
smaller models we examine for hybrid generation.

With this adapted task format, we evaluate the efficacy of
Chain of Thought prompt strategies across 8 models, 1.4B and
smaller, on 7 benchmark datasets. We reproduce a well-known
finding that Chain of Thought prompting is effective primarily
only for large train FLOP models. We also find support for
a novel scaling behavior for CoT using intermediate model
checkpoints from the OLMo model. Namely: that the benefits
from the Chain of Thought optimization emerge far more
slowly when scaling train compute by using more train tokens
rather than by increasing model size.

We break down the observed inference scaling behavior for
chain of thought and standard prompting by plotting IsoFLOP
curves; we find that much of the inference scaling behavior
for Chain of Thought is due to greater training FLOPs,
which is associated with more inference tokens generated.
In contrast, for Standard Prompting, generating more tokens
is associated with a steeper benchmark score, and cannot be
as well explained by simplying increasing the FLOPs of the
underlying base model.

However, we also find that increasing Chain of Thought
tokens allows a model to match the performance of a larger
base model, even when controlling for model size. This
supports the literature consensus that Chain of Thought can
improve model reasoning and allow for the use of shallower,
cheaper base models.

Based on this tradeoff between inference tokens, base model
size, and overall cost, we leverage our extension of the Obser-
vational Scaling Law framework to create a general method
for identifying compute optimality regimes for inference-time
optimizations based on expected lifetime inference demand. In
a regime with few expected inference tokens (perhaps because
one expects to quickly cycle to newer language models), it can
be more cost-effective to spend extra compute at inference-
time. Because log-train-compute correlates linearly with aver-
age model performance on downstream benchmark tasks, we
can compute a “Train-Equivalent FLOP” metric that directly
links an inference-optimized model to the additional compute
necessary to train a base model to the same performance. With
this, we can directly and analytically characterize the optimal



regime in which it is more cost-effective to use an inference
optimization rather than spend more train compute.

Finally, we evaluate the Ruan et al Observational Scaling
Laws with our benchmark data. We find that Observational
Scaling Laws are strongly dependent on the presence of a
code benchmark, which our data lacks; we confirm this by
ablating the code benchmark from the original Ruan et al
data, and we find that only one general reasoning PC remains,
which closely matches our own results. This may imply
that observational scaling law method is weaker and more
dependent on benchmark variety than initially apparent.

Opportunities for future work include adding additional
benchmarks, including coding benchmarks; training with more
models and larger model sizes, especially >12B; and inves-
tigating a variety of inference-time optimizations, including
search methods.

ACKNOWLEDGMENT

Thanks to Nikhil Sardana and Jacob Portes of Mosaic
Research for their detailed guidance on language model eval-
uation and inference-aware scaling laws. A further thanks
to Kaoutar El Maghroui for her mentorship throughout
Columbia’s COMS6998: High-Performance Machine Learning
course. We would also like to thank Google and the TPU
Research Cloud for providing free TPU credits and resources.

REFERENCES

[1] Marah Abdin et al. Phi-3 Technical Report: A Highly
Capable Language Model Locally on Your Phone. Aug.
2024. DOI: 10.48550/arXiv.2404.14219. arXiv: 2404.
14219 [cs]. (Visited on 12/21/2024).

[2] Marah Abdin et al. Phi-4 Technical Report. Dec. 2024.
DOI: 10.48550/arXiv.2412.08905. arXiv: 2412.08905
[cs]. (Visited on 12/21/2024).

[3] Stella Biderman et al. “Pythia: A suite for analyzing
large language models across training and scaling”. In:
International Conference on Machine Learning. PMLR.
2023, pp. 2397–2430.

[4] Bradley Brown et al. Large Language Monkeys: Scaling
Inference Compute with Repeated Sampling. Sept. 2024.
arXiv: 2407.21787 [cs]. (Visited on 10/23/2024).

[5] Tom B. Brown et al. Language Models are Few-Shot
Learners. 2020. eprint: arXiv:2005.14165.

[6] Mark Chen et al. Evaluating Large Language Models
Trained on Code. 2021. arXiv: 2107.03374 [cs.LG].

[7] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
A Survey on Deep Neural Network Pruning-Taxonomy,
Comparison, Analysis, and Recommendations. 2024.
arXiv: 2308.06767 [cs.LG]. URL: https://arxiv.org/
abs/2308.06767.

[8] Leshem Choshen, Yang Zhang, and Jacob Andreas. A
Hitchhiker’s Guide to Scaling Law Estimation. 2024.
eprint: arXiv:2410.11840.

[9] Peter Clark et al. Think You Have Solved Question
Answering? Try ARC, the AI2 Reasoning Challenge.
Mar. 2018. DOI: 10.48550/arXiv.1803.05457. arXiv:
1803.05457 [cs]. (Visited on 12/21/2024).

[10] Karl Cobbe et al. Training Verifiers to Solve Math Word
Problems. Nov. 2021. DOI: 10.48550/arXiv.2110.14168.
arXiv: 2110.14168 [cs]. (Visited on 12/21/2024).

[11] Tri Dao et al. FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-Awareness. June 2022.
DOI: 10.48550/arXiv.2205.14135. arXiv: 2205.14135
[cs]. (Visited on 12/21/2024).

[12] Yao Fu et al. Complexity-Based Prompting for Multi-
Step Reasoning. 2022. arXiv: 2210.00720.

[13] Leo Gao et al. A framework for few-shot language
model evaluation. Version v0.4.3. July 2024. DOI: 10.
5281 / zenodo . 12608602. URL: https : / / zenodo . org /
records/12608602.

[14] Amir Gholami et al. A Survey of Quantization Methods
for Efficient Neural Network Inference. June 2021. DOI:
10.48550/arXiv.2103.13630. arXiv: 2103.13630 [cs].
(Visited on 12/21/2024).

[15] Aaron Grattafiori et al. The Llama 3 Herd of Models.
Nov. 2024. DOI: 10.48550/arXiv.2407.21783. arXiv:
2407.21783 [cs]. (Visited on 12/21/2024).

[16] Dirk Groeneveld et al. “OLMo: Accelerating the Sci-
ence of Language Models”. In: Preprint (2024).

[17] Yuling Gu et al. OLMES: A Standard for Language
Model Evaluations. June 2024. DOI: 10 . 48550 /
arXiv . 2406 . 08446. arXiv: 2406 . 08446. (Visited on
11/28/2024).

[18] Sylvain Gugger et al. Accelerate: Training and infer-
ence at scale made simple, efficient and adaptable.
https://github.com/huggingface/accelerate. 2022.

[19] Dan Hendrycks et al. Measuring Massive Multitask
Language Understanding. Jan. 2021. DOI: 10 .48550/
arXiv . 2009 . 03300. arXiv: 2009 . 03300. (Visited on
11/28/2024).

[20] John Hewitt, Christopher D. Manning, and Percy Liang.
Truncation Sampling as Language Model Desmoothing.
2022. arXiv: 2210.15191.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the Knowledge in a Neural Network. Mar. 2015.
DOI: 10.48550/arXiv.1503.02531. arXiv: 1503.02531
[stat]. (Visited on 12/21/2024).

[22] Jordan Hoffmann et al. Training Compute-Optimal
Large Language Models. Mar. 2022. arXiv: 2203.15556
[cs]. (Visited on 10/23/2024).

[23] Itay Hubara et al. “Quantized Neural Networks: Train-
ing Neural Networks with Low Precision Weights and
Activations”. In: Journal of Machine Learning Research
18.187 (2018), pp. 1–30. ISSN: 1533-7928. (Visited on
12/21/2024).

[24] Jared Kaplan et al. Scaling Laws for Neural Language
Models. Jan. 2020. DOI: 10.48550/arXiv.2001.08361.
arXiv: 2001.08361. (Visited on 11/16/2024).

https://doi.org/10.48550/arXiv.2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.48550/arXiv.2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2407.21787
arXiv:2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2308.06767
arXiv:2410.11840
https://doi.org/10.48550/arXiv.1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.48550/arXiv.2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2210.00720
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://doi.org/10.48550/arXiv.2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2406.08446
https://doi.org/10.48550/arXiv.2406.08446
https://arxiv.org/abs/2406.08446
https://github.com/huggingface/accelerate
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2210.15191
https://doi.org/10.48550/arXiv.1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.48550/arXiv.2001.08361
https://arxiv.org/abs/2001.08361


[25] Apoorv Khandelwal et al. 100Kor100Days : Trade−
offswhenPre−TrainingwithAcademicResources.
2024. eprint: arXiv:2410.23261.

[26] Takeshi Kojima et al. Large Language Models are Zero-
Shot Reasoners. 2022. arXiv: 2205.11916.

[27] Woosuk Kwon et al. Efficient Memory Management for
Large Language Model Serving with PagedAttention.
Sept. 2023. DOI: 10.48550/arXiv.2309.06180. arXiv:
2309.06180 [cs]. (Visited on 12/21/2024).

[28] Woosuk Kwon et al. “Efficient Memory Management
for Large Language Model Serving with PagedAtten-
tion”. In: Proceedings of the ACM SIGOPS 29th Sym-
posium on Operating Systems Principles. 2023.

[29] Jeffrey Li et al. DataComp-LM: In search of the next
generation of training sets for language models. 2024.
eprint: arXiv:2406.11794.

[30] Xiang Lisa Li et al. Contrastive Decoding: Open-ended
Text Generation as Optimization. 2022. arXiv: 2210 .
15097.

[31] Stephanie Lin, Jacob Hilton, and Owain Evans. Truth-
fulQA: Measuring How Models Mimic Human False-
hoods. May 2022. DOI: 10.48550/arXiv.2109.07958.
arXiv: 2109.07958 [cs]. (Visited on 12/21/2024).

[32] Niklas Muennighoff et al. Crosslingual Generalization
through Multitask Finetuning. May 2023. DOI: 10 .
48550 / arXiv.2211 .01786. arXiv: 2211 .01786 [cs].
(Visited on 12/21/2024).

[33] Yangjun Ruan, Chris J. Maddison, and Tatsunori
Hashimoto. Observational Scaling Laws and the Pre-
dictability of Language Model Performance. Oct. 2024.
arXiv: 2405.10938 [cs]. (Visited on 10/25/2024).

[34] Keisuke Sakaguchi et al. WinoGrande: An Adversarial
Winograd Schema Challenge at Scale. Nov. 2019. DOI:
10.48550/arXiv.1907.10641. arXiv: 1907.10641 [cs].
(Visited on 12/21/2024).

[35] Nikhil Sardana et al. Beyond Chinchilla-Optimal: Ac-
counting for Inference in Language Model Scaling
Laws. July 2024. arXiv: 2401 . 00448. (Visited on
10/14/2024).

[36] Ao Shen, Zhiquan Lai, and Dongsheng Li. “Explor-
ing Quantization Techniques for Large-Scale Language
Models: Methods, Challenges and Future Directions”.
In: Proceedings of the 2024 9th International Confer-
ence on Cyber Security and Information Engineering.
ICCSIE ’24. New York, NY, USA: Association for
Computing Machinery, Dec. 2024, pp. 783–790. ISBN:
9798400718137. DOI: 10 . 1145 / 3689236 . 3695383.
(Visited on 12/20/2024).

[37] Charlie Snell et al. Scaling LLM Test-Time Compute
Optimally Can Be More Effective than Scaling Model
Parameters. Aug. 2024. arXiv: 2408 . 03314 [cs].
(Visited on 09/19/2024).

[38] Zayne Sprague et al. To CoT or not to CoT? Chain-of-
thought helps mainly on math and symbolic reasoning.
2024. arXiv: 2409.12183.

[39] Gemma Team. “Gemma”. In: (2024). DOI: 10.34740/
KAGGLE/M/3301. URL: https://www.kaggle.com/m/
3301.

[40] Qwen Team. Qwen2.5: A Party of Foundation Models.
Sept. 2024. URL: https://qwenlm.github.io/blog/qwen2.
5/.

[41] Hugo Touvron et al. LLaMA: Open and Efficient Foun-
dation Language Models. Feb. 2023. arXiv: 2302 .
13971. (Visited on 10/23/2024).

[42] Ashish Vaswani et al. “Attention is All you Need”. In:
Advances in Neural Information Processing Systems.
Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017. URL: https://proceedings.neurips.cc/paper files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

[43] Ante Wang et al. Fine-Grained Self-Endorsement Im-
proves Factuality and Reasoning. 2024. arXiv: 2402 .
15631.

[44] Xuezhi Wang and Denny Zhou. Chain-of-Thought Rea-
soning Without Prompting. 2024. arXiv: 2402.10200.

[45] Xuezhi Wang et al. Self-Consistency Improves Chain of
Thought Reasoning in Language Models. 2022. arXiv:
2203.11171.

[46] Jason Wei et al. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. Jan. 2023. DOI:
10.48550/arXiv.2201.11903. arXiv: 2201.11903 [cs].
(Visited on 12/13/2024).

[47] Sean Welleck et al. From Decoding to Meta-
Generation: Inference-time Algorithms for Large Lan-
guage Models. Nov. 2024. DOI: 10 . 48550 / arXiv .
2406 . 16838. arXiv: 2406 . 16838 [cs]. (Visited on
12/21/2024).

[48] An Yang et al. “Qwen2 Technical Report”. In: arXiv
preprint arXiv:2407.10671 (2024).

[49] Michihiro Yasunaga et al. Large Language Models as
Analogical Reasoners. 2023. arXiv: 2310.01714.

[50] Rowan Zellers et al. HellaSwag: Can a Machine Really
Finish Your Sentence? May 2019. DOI: 10.48550/arXiv.
1905 . 07830. arXiv: 1905 . 07830 [cs]. (Visited on
12/21/2024).

[51] Dan Zhang et al. ReST-MCTS*: LLM Self-Training via
Process Reward Guided Tree Search. 2024. arXiv: 2406.
03816.

[52] Wayne Xin Zhao et al. A Survey of Large Language
Models. 2024. arXiv: 2303 . 18223 [cs.CL]. URL:
https://arxiv.org/abs/2303.18223.

[53] Huaixiu Steven Zheng et al. Take a Step Back: Evoking
Reasoning via Abstraction in Large Language Models.
2023. arXiv: 2310.06117.

[54] Denny Zhou et al. Least-to-Most Prompting Enables
Complex Reasoning in Large Language Models. 2022.
arXiv: 2205.10625.

arXiv:2410.23261
https://arxiv.org/abs/2205.11916
https://doi.org/10.48550/arXiv.2309.06180
https://arxiv.org/abs/2309.06180
arXiv:2406.11794
https://arxiv.org/abs/2210.15097
https://arxiv.org/abs/2210.15097
https://doi.org/10.48550/arXiv.2109.07958
https://arxiv.org/abs/2109.07958
https://doi.org/10.48550/arXiv.2211.01786
https://doi.org/10.48550/arXiv.2211.01786
https://arxiv.org/abs/2211.01786
https://arxiv.org/abs/2405.10938
https://doi.org/10.48550/arXiv.1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2401.00448
https://doi.org/10.1145/3689236.3695383
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2409.12183
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.34740/KAGGLE/M/3301
https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2402.15631
https://arxiv.org/abs/2402.15631
https://arxiv.org/abs/2402.10200
https://arxiv.org/abs/2203.11171
https://doi.org/10.48550/arXiv.2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.48550/arXiv.2406.16838
https://doi.org/10.48550/arXiv.2406.16838
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2310.01714
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2205.10625


VI. APPENDIX

A. Extended Literature Review for Inference-Time Optimiza-
tions

Sampling Several works have explored various sampling
methods. Token-level sampling parameters adjust methods for
selecting the next token from language model output distribu-
tions: these include top-k sampling, which only considers the
top-k tokens with the highest probability; top-p, or nucleus,
sampling, which considers the top tokens whose probability
sums to p; and top-eta sampling, which weights probability
by distribution entropy to improve generation in low entropy
settings [47, 20]. Contrastive Decoding uses two LMs, one
large and one small, to identify the best token; based on the
idea that a log probability gap between a small, low-skill
model and a larger, high-skill model indicates a token is espe-
cially promising, Contrastive Decoding predicts tokens based
on the difference between the probability it is predicted by the
large model and the probability it is predicted by the small
model [30]. Task-level sampling methods repeatedly sample
completions for a given task, to identify better answers. Token-
level sampling complements task-level sampling methods by
introducing diversity in generations, increasing the probability
that additional generations cover the correct answer. Task-level
sampling methods include Self-Consistency, which repeatedly
samples chain of thought continuations for a task and outputs
the most common answer, regardless of reasoning [45]. Chain
of Thought Decoding notes that alternative tokens predicted by
the model often contain chain of thought paths, even when not
prompted for by the user [44]. They also identify that the final
answer of a chain of thought path is more confident (having
a large gap in probability between the first and second most
probable tokens), and use that to create a metric for identifying
chain of thought paths for decoding.

Search Search techniques attempt to refine intermediate
model outputs during generation, by modeling the generation
process as traversing over a tree or graph structure. Search
techniques often include backtracking, and make use of sam-
pling techniques like Monte Carlo Tree Search to estimate the
value of potential continuations [51]. Another common search
technique is Beam Search, which holds a ”beam” of potential
generations, adding to each potential sequence at each timestep
and then winnowing them down to only keep the top-K using
metrics like repetition and length [47].

Verifiers Verifier models, which identify whether an given
output is correct or not, are often used to complement sampling
and search, either by identifying correct solutions or providing
intermediate reward to guide generations, e.g., through process
reward models. Automatic verifier models are deterministic
(e.g., automated proof solvers, code compilers), often used for
math and coding tasks. Generative verifiers use an underlying
generative AI model, such as a large language model, along
with an output head that identifies if the answer is correct or
outputs a reward. Learned verifiers are finetuned on verifica-
tion data for greater accuracy [47, 37]. Verifiers can either be
process-based or outcome-based, depending on whether they

act on intermediate steps of a generation or only evaluate the
final, full generation. Verifier-based methods include Best-of-
N, which samples N generations and identifies whether any are
correct, returning the correct one, and Weighted Majority Vote,
which weights outputs by the probability they are considered
correct (based on a reward model), and takes the most valued
output based on those weights and frequencies [4]. Techniques
like ReST-MCTS utilize process reward models to inform tree
search and backtracking [51].

B. Evaluation Hardware

For evaluation, we used a variety of accelerators, including
RTX 4090, V100, A100 PCIe, H100 SXM, and TPU v4-
8, using Columbia’s Terremoto computing cluster, Google
Cloud Platform, TPU Research Cloud, and third-party com-
pute providers (Hyperbolic AI). We explored evaluations on
single-node multi-GPU, multi-node multi-GPU, single-node
multi-TPU, and multi-node multi-TPU settings, although the
vast majority of evaluations were done on single-node multi-
GPU settings. In addition to vLLM, we used the Accelerate
package [18] to enable multi-GPU training.

C. Free-Form Generation Performance

Fig. 10. Model Performance on Chain of Thought with Free-Form Generation
Format. Accuracy scores across 7 tasks are averaged to yield one overall score,
which is subtracted from baseline performance with log-likelihood format.
Across the board worse performance, even with the benefits of CoT, indicates
the comparative difficulty of the free-form generation format compared to
log-likelihood.


	Introduction
	Background and Motivation

	Literature Review
	Scaling Laws
	Inference Optimizations

	Methodology
	Results and Discussion
	Log-Likelihood Form
	Hybrid Generation Format
	Chain of Thought Prompting
	Latent Reasoning Decomposition
	Cost-Performance Profiling

	Conclusion
	Appendix
	Extended Literature Review for Inference-Time Optimizations
	Evaluation Hardware
	Free-Form Generation Performance


