Akshay Manglik

New York, NY • am5747@columbia.edu • akshaymanglik.com • Google Scholar • github.com/AkshayM21

Education

2021-2025	B.A. in Computer Science and Economics, Columbia University
	Minor in Mathematics
	GPA: 4.01/4.33, Major GPA: 4.07/4.33
	Courses: Machine Learning, High Performance Machine Learning, Artificial
	Intelligence, Natural Language Processing, Real Analysis, Algorithms, Proba-
	bility Theory, Quantum Computing, Machine Learning & Causality, Linear
	Algebra, Data Structures, Game Theory and Political Theory

Research Experience

2023-2024	AlQuraishi Lab, Columbia UniversityAdapted AlphaFold2 for single sequence protein structure prediction.Analyzed scaling laws for data composition, model size, and data size.
2022-2023	 Schrauwen Lab, Columbia Irving Medical Center Conducted differential DNA methylation analysis using R to analyze epigenetic factors in epilepsy. Analyzed 750K+ DNA regions. Used de novo assembly packages to analyze long-read genomic sequences.
2022–Present	 Dynamic Perception & Memory Lab, Columbia Analyzed fMRI and language data to understand neural and semantic representations generated by the method of loci memory technique. 2nd author of preprint. Presented findings at OHBM 2023.
2019–2021	Quantitative Imaging and AI Lab, StanfordDeveloped first deep learning architecture for ocular melanoma diagnosis.Improved state-of-the-art accuracy by 11% using CNNs.

Industry Experience

2024	 AI Engineering Intern, PayPal Developed NLP vector search system for regulatory compliance. PayPal intends to patent system. System projected to save \$10M+/year through false positive reduction.
2023-2024	 Research Intern, Johns Hopkins Applied Physics Lab Researched techniques to extract heart rate from drone video footage. Investigated architectures and data augmentations for robustness. Developed segmentation and labeling pipeline using pretrained vision transformers to augment supervised training of wound detection algorithms.

Teaching Experience

2025-Present	Incoming Course Assistant, Columbia UniversitySpring 2025 Course Assistant for "Neural Networks and Deep Learning" graduate-level topics course taught by Prof. Rich Zemel.
2021-2024	 Assistant Debate Coach, The Harker School Coached 20+ nationally-ranked students to debate core issues in politics, economics, and philosophy. Students have won major national championships. Adjudicated 100+ debate rounds at national tournaments.
2021-2021	Debate Instructor, Victory Briefs Institute • Taught students argumentative concepts for 3-week debate camp. Developed curricula, and led advanced seminars on rhetorical theory.

Independent Research and Projects

1. Test-Time Optimization Scaling Laws (2024–Present)

Course project supervised by Prof. Kaoutar El Maghraoui (IBM Research). Investigating scaling behavior of test-time search, sampling, and prompting methods, across model families, model sizes, training data levels, and types of reasoning, using "Observational Scaling Laws" framework for 5+ benchmarks. Developing metrics for cost-aware inference strategy selection. Link to Interim Preprint. Link to Codebase.

2. Belief State Space Models (2024-Present)

Independent collaboration with Dr. Alex Lamb & Dr. John Langford (Microsoft Research NYC). Extending "Belief State Transformers" bidirectional training objective to selective state space models, as evaluated on star graph problem.

3. Evaluating the Robustness of Self-Adaptive Robust Attention (SARA) (2024–Present) Analyzed SARA's ability to identify high-level visual features for text-focused captioning under adversarial perturbation; conducted the first assessment of SARA on image captioning tasks; studied data efficiency of SARA uptraining. Course project supervised by Prof. Krzysztof Choromanski, a co-author of the original SARA paper (DeepMind).

Publications and Posters

Publications	[1] Jiawen Huang, Akshay Manglik, Nick Dutra, Hannah Tarder-Stoll, Tay-
	lor Chamberlain, Robert Ajemian, Qiong Zhang, Kenneth A. Norman, and
	Christopher Baldassano. Binding items to contexts through conjunctive neural
	representations with the Method of Loci. bioRxiv Preprint, 2024.
	[2] Akshay Manglik*, Aman Choudhri*. When to Think Step by Step: Com-
	puting the Cost-Performance Trade-offs of Chain-of-Thought Prompting. Interim
	Preprint. 2024.
	[3] Akshay Manglik. On Bias: Moral Intuitions, Rationalizations, and Adver-
	sarial Disagreement. Gadfly Magazine. 2022.
Posters	Organization for Human Brain Mapping Annual Meeting (Montreal, 2023)
	Cornell Norman Kretzmann Undergraduate Philosophy Conference (2024)
	Columbia Undergraduate Research Symposium (2022)
	Columbia Undergraduate CS & Data Science Research Fair (2022)

Technical Skills

Languages	Python, Java, C, Javascript, Typescript, Bash, SQL
ML/AI	PyTorch, TensorFlow, Keras, CUDA, Triton, Langchain, Huggingface, Pandas
Cloud & Web	GCP, AWS, Firebase, BigQuery, Docker, React.js, Flask

Honors and Awards

2021–Present Dean's List (6 semesters), Columbia Unive	ersity
2024 Second Place, Columbia Healthcare Ventu	res Fast-Pitch Competition (\$2000
prize)	
2024 Ellison Scholars Shortlist	
2022 Laidlaw Scholar (1 of 25 selected, provided	d over \$8000 in funding)
2022 Data Science Institute Scholar (1 of 10 sele	ected)
2021 National Merit Scholar	
2021 National Debate Champion (NDCA Cham	pion, TOC Semifinalist)
2021 Certificate of Special Congressional Recog	gnition (climate change diplomacy
policy work)	
2020 Certificate of Special Congressional Recog	gnition (homelessness policy work)